Multiscale modelling and simulation of materials and structures

Modélisation multi-échelles des matériaux et des structures

V. Sansalone, T. Lemaire

vittorio.sansalone@u-pec.fr
lemaire@univ-paris12.fr

Université Paris–Est Créteil Val de Marne
M2 CoMeT, Méc3-2, 2010-2011
Outline

<table>
<thead>
<tr>
<th>Part I: General concepts</th>
<th>CM</th>
<th>TD</th>
<th>VS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II: Variational homogenisation</td>
<td></td>
<td></td>
<td>VS</td>
</tr>
<tr>
<td>Part III: Volume averaging method</td>
<td></td>
<td></td>
<td>TL</td>
</tr>
<tr>
<td>Part IV: Eshelby-type homogenisation</td>
<td></td>
<td></td>
<td>VS</td>
</tr>
<tr>
<td>Part V: Asymptotic homogenisation</td>
<td></td>
<td></td>
<td>TL</td>
</tr>
</tbody>
</table>

TP: 😊 bibliography project + homework
😊😊 computational project + homework
😊😊 practical work 2 ×
Outline

Part I: General concepts

Part II: Variational homogenisation

Part III: Volume averaging method

Part IV: Eshelby-type homogenisation

Part V: Asymptotic homogenisation

TP: ☺ bibliography project + homework

☺☺ computational project + homework

☺☺ practical work 2 × ☻
Outline

Part I: General concepts

Part II: Variational homogenisation

Part III: Volume averaging method

Part IV: Eshelby-type homogenisation

Part V: Asymptotic homogenisation

TP: ☺ bibliography project + homework

☺☺ computational project + homework

☺☺ practical work $2 \times$
Outline

Part I ... VS

General concepts

- Motivations & examples.
- Scale separation
 Representative Volume Element (RVE)
- General strategy
 - Microstructure
 - Localisation
 - Homogenisation
- Multiscale methods: main ideas.
- Discussion.
Outline

Part II ... VS
Variational homogenisation
- Basics + details.
- Application: composites.

Part III ... TL
Volume averaging method
- Basics + details.
- Application: transport.

Part IV ... VS
Eshelby-type homogenisation
- Basics.
- Application: poroelasticity.

Part V ... TL
Asymptotic homogenisation
- Basics.
- Application: poroelasticity.
Outline

Part II ... **VS**
Variational homogenisation
 - Basics + details.
 - Application: composites.

Part III ... **TL**
Volume averaging method
 - Basics + details.
 - Application: transport.

Part IV ... **VS**
Eshelby-type homogenisation
 - Basics.
 - Application: poroelasticity.

Part V ... **TL**
Asymptotic homogenisation
 - Basics.
 - Application: poroelasticity.
Goal

What will you be able to do after these lectures?

▶ understand the “classical” and “state-of-the-art” theories and modelling approaches for mechanics of heterogeneous media
▶ follow the current scientific literature on modelling of heterogeneous media
▶ understand the principles and theories employed in specialised computer tools
▶ formulate and solve a mechanical problem for the analysis of a heterogeneous medium

▶ fill the gap between material and structure: smart design
Goal

What will you be able to do after these lectures?

▶ understand the “classical” and “state-of-the-art” theories and modelling approaches for mechanics of heterogeneous media
▶ follow the current scientific literature on modelling of heterogeneous media
▶ understand the principles and theories employed in specialised computer tools
▶ formulate and solve a mechanical problem for the analysis of a heterogeneous medium
▶ fill the gap between material and structure: smart design